Worthington Sharpe website

Thursday 24 August 2017

Swarming

Command and Control of UAV Swarms

In many drone applications it would be beneficial to simultaneously operate a swarm of multiple aircraft. While there have been demonstrations of swarms involving up to 100 drones, there are few examples of use in practical scenarios.

It is likely that one reason for the is the difficulty of effectively organising and controlling the swarm using standard transmitters and laptop computers. An alternative approach to commanding and controlling a swarm using the Wing control device and Wing GCS Ground Control Station is presented here.

Control of a drone swarm presents interesting challenges that, are poorly met by conventional human interfaces. The Wing's unique six-axis capabilities offer a great starting point for the control demands. Furthermore, the Wing GCS can be fitted with the telemetry systems required and a powerful computer to handle multiple video feeds.

We're currently working on our next model of the rugged ground control station hardware and are looking for collaborators on the software side.

Wing GCS Swarming Features

Combined mouse and joystick functions

  • The Wing incorporates a high resolution mouse sensor and standard mouse buttons and scroll wheel.
  • This is ideal for point-and-click tasks such as defining multiple waypoints. Alternative input methods such as touch-screens suffer from a lack of precision, user fatigue, and problems with unintentional command input.
  • Integrated joystick functions allow seamless transition from global control of the swarm or individual control of a single aircraft or sensor gimbal.
Combined mouse and joystick functions
Wing UAV Control Functions


24” Outdoor viewable screen


  • Display is much larger than most UAV ground station displays and is ideal means it can be used for accurate waypoint manipulation of multiple aircraft display of several camera feeds.
  • The screen’s brightness and large viewing angle make it practical to use even in direct sunlight, typically a major problem with conventional laptop or tablet computers.



Secondary Joystick & full-sized keyboard

  • An integrated secondary joystick enables independent control of the camera gimbal or panning the map view.
  • The full-sized waterproof keyboard provides usability similar to a desktop computer.
  • A six-position rotary switch can be configured for changing flight-modes and six three-position switches are fitted for user-definable functions.

Component Storage Bay


  • The large component bay can be configured with a powerful computer such as an Intel NUC or HP Z Series workstation. More than one computer can be fitted.
  • Space is available for multiple aircraft telemetry systems and Real-Time Kinematic (RTK) systems.



Implementation

In order to illustrate the potential benefits, a number of different mission planner and piloting operations are discussed below.

Global Swarm Control


  • Mouse functions can be used to define a boundary for a simple grid search pattern.
  • Keyboard short-cuts or the scroll-wheel can be used to define grid spacing.  The numeric keypad can be used to set altitude.




Command of Drone Sub-Groups


  • Right-button menu or keyboard shortcut to assign commands.
  • Mouse functions offer necessary precision and speed for selecting aircraft and assigning different waypoints.
  • Right-button menu or keyboard shortcut to assign commands.
  • 24” screen allows large area to be displayed in detail.
  • Pitch, roll & yaw functions or secondary joystick used for view manipulation.




Command of Individual Aircraft or Manual Piloting


  • The mouse functions can be used to select an individual aircraft then pitch roll yaw and throttle functions used to pilot lead aircraft.
  • All this can be done seamlessly without having to change input devices. 



Collaboration

An integrated approach to the human interface, ground control station hardware and the software is required to realise the full potential that drone swarming offers. If you would like to work with us on either software development or flight testing, or if you have an application in mind, then please get in touch. wing@worthigntonsharpe.com

















Friday 17 March 2017

European Robotics League

The European Robotics League comprises of two indoor robotics competitions, ERL Industrial Robots and ERL Service Robots, and one outdoor robotics competition, ERL Emergency Robots.

I was delighted to be asked if Worthington Sharpe could be involved as a competition sponsor. We will be providing a loan of the Wing GCS Ground Control Station for the outdoor Emergency Robots competition.

ERL Emergency Robots Competition
Emergency Robots is a civilian, outdoor robotics competition, with a focus on realistic, multi-domain emergency response scenarios. Inspired by the 2011 Fukushima accident, the ERL Emergency Grand Challenge can only be overcome when land, underwater and flying robots successfully cooperate.

The teams have enough to  worry about and the provision of a single human interface and Ground Control Station for control of all vehicle types including UAVs (drones) Remotely Operated Vehicles (ROVs) and ground robots, and will allow a selected team to focus on the cognition, intelligence, and autonomy of the robots.

We are in the process of developing a new version of the Wing GCS. This will comprise the same general layout and major components, but with a modified case design that is more robust and waterproof. A rendering of the new design in progress is shown below.



Wing GCS (Ground Control Station) for UAVs/drones
Our proposed Ground Control Station